Petroleum Products And Their Uses

Kian Petroleum Company is an international specialized petrochemical company producing various petroleum products such as Gasoline


Gaseous refinery products include hydrogen, fuel gas, ethane, propane, and butane. Most of the hydrogen is consumed in refinery desulfurization facilities, which remove hydrogen sulfide from the gas stream and then separate that compound into elemental hydrogen and sulfur; small quantities of the hydrogen may be delivered to the refinery fuel system. Refinery fuel gas varies in composition but usually contains a significant amount of methane; it has a heating value similar to natural gas and is consumed in plant operations

Periodic variability in heating value makes it unsuitable for delivery to consumer gas systems. Ethane may be recovered from the refinery fuel system for use as a petrochemical feedstock. Propane and butane are sold as liquefied petroleum gas (LPG), which is a convenient portable fuel for domestic heating and cooking or for light industrial use


Motor gasoline, or petrol, must meet three primary requirements. It must provide an even combustion pattern, start easily in cold weather, and meet prevailing environmental requirements

Octane rating

In order to meet the first requirement, gasoline must burn smoothly in the engine without premature detonation, or knocking. Severe knocking can dissipate power output and even cause damage to the engine. When gasoline engines became more powerful in the 1920s, it was discovered that some fuels knocked more readily than others

Experimental studies led to the determination that, of the standard fuels available at the time, the most extreme knock was produced by a fuel composed of pure normal heptane, while the least knock was produced by pure isooctane. This discovery led to the development of the octane scale for defining gasoline quality. Thus, when a motor gasoline gives the same performance in a standard knock engine as a mixture of 90 percent isooctane and 10 percent normal heptane, it is given an octane rating of 90

Gasoline blending

One of the most critical economic issues for a petroleum refiner is selecting the optimal combination of components to produce final gasoline products. Gasoline blending is much more complicated than a simple mixing of components. First, a typical refinery may have as many as 8 to 15 different hydrocarbon streams to consider as blend stocks

These may range from butane, the most volatile component, to a heavy naphtha and include several gasoline naphthas from crude distillation, catalytic cracking, and thermal processing units in addition to alkylate, polymer, and reformate

Modern gasoline may be blended to meet simultaneously 10 to 15 different quality specifications, such as vapour pressure; initial, intermediate, and final boiling points; sulfur content; colour; stability; aromatics content; olefin content; octane measurements for several different portions of the blend; and other local governmental or market restrictions

Since each of the individual components contributes uniquely in each of these quality areas and each bears a different cost of manufacture, the proper allocation of each component into its optimal disposition is of major economic importance

In order to address this problem, most refiners employ linear programming, a mathematical technique that permits the rapid selection of an optimal solution from a multiplicity of feasible alternative solutions. Each component is characterized by its specific properties and cost of manufacture, and each gasoline grade requirement is similarly defined by quality requirements and relative market value

The linear programming solution specifies the unique disposition of each component to achieve maximum operating profit. The next step is to measure carefully the rate of addition of each component to the blend and collect it in storage tanks for final inspection before delivering it for sale. Still